The Burst Mode of Protostellar Accretion

نویسندگان

  • E. I. Vorobyov
  • Shantanu Basu
چکیده

We present new numerical simulations in the thin-disk approximation which characterize the burst mode of protostellar accretion. The burst mode begins upon the formation of a centrifugally balanced disk around a newly formed protostar. It is comprised of prolonged quiescent periods of low accretion rate (typically . 10M⊙ yr ) which are punctuated by intense bursts of accretion (typically & 10M⊙ yr , with duration . 100 yr) during which most of the protostellar mass is accumulated. The accretion bursts are associated with the formation of dense protostellar/protoplanetary embryos, which are later driven onto the protostar by the gravitational torques that develop in the disk. Gravitational instability in the disk, driven by continuing infall from the envelope, is shown to be an effective means of transporting angular momentum outward, and mass inward to the protostar. We show that the disk mass always remains significantly less than the central protostar mass throughout this process. The burst phenomenon is robust enough to occur for a variety of initial values of rotation rate, frozen-in (supercritical) magnetic field, and density-temperature relations. Even in cases where the bursts are nearly entirely suppressed, a moderate increase in cloud size or rotation rate can lead to vigorous burst activity. We conclude that most (if not all) protostars undergo a burst mode of evolution during their early accretion history, as inferred empirically from observations of FU Orionis variables. Subject headings: accretion, accretion disks — hydrodynamics — instabilities — ISM : clouds — MHD — stars: formation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Origin of Episodic Accretion Bursts in the Early Stages of Star Formation

We study numerically the evolution of rotating cloud cores, from the collapse of a magnetically supercritical core to the formation of a protostar and the development of a protostellar disk during the main accretion phase. We find that the disk quickly becomes unstable to the development of a spiral structure similar to that observed recently in AB Aurigae. A continuous infall of matter from th...

متن کامل

A Solution to the Protostellar Accretion Problem

Accretion rates of order 10−8 M⊙yr are observed in young protostars of approximately a solar mass with evidence of circumstellar disks. The accretion rate is significantly lower for protostars of smaller mass, approximately proportional to the second power of the stellar mass, Ṁaccr ∝ M2. The traditional view is that the observed accretion is the consequence of the angular momentum transport in...

متن کامل

Non-steady Accretion in Protostars

Observations indicate that mass accretion rates onto low-mass protostars are generally lower than the rates of infall to their disks; this suggests that much of the protostellar mass must be accreted during rare, short outbursts of rapid accretion. We explore when protostellar disk accretion is likely to be highly variable. While constant α disks can in principle adjust their accretion rates to...

متن کامل

Outflows from dynamo-active protostellar accretion discs

An axisymmetric model of a cool, dynamo-active accretion disc is applied to protostellar discs. Thermally and magnetically driven outflows develop that are not collimated within 0.1AU. In the presence of a central magnetic field from the protostar, accretion onto the protostar is highly episodic, which is in agreement with earlier work.

متن کامل

The Formation of Stellar Clusters: Time Varying Protostellar Accretion Rates

Identifying the processes that determine strength, duration and variability of protostellar mass growth is a fundamental ingredient of any theory of star formation. I discuss protostellar mass accretion rates Ṁ from numerical models which follow molecular cloud evolution from turbulent fragmentation towards the formation of stellar clusters. In a dense cluster environment, Ṁ is strongly time va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006